WERBUNG

microRNAs: Neues Verständnis des Wirkmechanismus bei Virusinfektionen und seine Bedeutung

MicroRNAs oder kurz miRNAs (nicht zu verwechseln mit mRNA oder Messenger-RNA) wurden 1993 entdeckt und in den letzten zwei Jahrzehnten intensiv auf ihre Rolle bei der Regulierung der Genexpression untersucht. miRNAs werden in verschiedenen Körperzellen und -geweben unterschiedlich exprimiert. Jüngste Forschungen der Wissenschaftler der Queen's University in Belfast haben die mechanistische Rolle von miRNAs bei der Regulierung des Immunsystems entschlüsselt, wenn Körperzellen durch Viren herausgefordert werden. Diese Erkenntnisse werden zu einem besseren Verständnis der Krankheit und ihrer Nutzung als Ziele für neue therapeutische Entwicklungen führen.  

MicroRNAs or miRNAs have gained popularity over the past two decades for their role in post-transcriptional processes such as differentiation, metabolic homeostasis, proliferation and apoptosis (1-5). miRNAs are small single-stranded RNA sequences that do not encode for any proteins. They are derived from larger precursors, which are double-stranded RNAs. The biogenesis of miRNA starts in the nucleus of the cell and involves generation of primary miRNA transcripts by RNA polymerase II followed by trimming of the primary transcript to release the pre-miRNA hairpin by an enzyme complex. The primary miRNA is then exported to the cytoplasm where it is acted upon by DICER (a protein complex that further cleaves the pre-miRNA), thereby producing the mature single-stranded miRNA. The mature miRNA integrates itself as part of the RNA induced silencing complex (RISC) and induces post-transcriptional gene silencing by fastening RISC to the complementary regions, found within the 3’ untranslated regions (UTRs), in the target mRNAs. 

The story began in 1993 with the discovery of miRNAs in C. elegans von Lee und seinen Kollegen (6). Es wurde beobachtet, dass das LIN-14-Protein durch ein anderes transkribiertes Gen namens lin-4 herunterreguliert wurde und diese Herunterregulierung für die Larvenentwicklung in notwendig war C. elegans in progressing from stage L1 to L2. The transcribed lin-4 resulted in downregulating LIN-14 expression via complementary binding to the 3’UTR region of lin-4 mRNA, with little changes to mRNA levels of lin-4. This phenomenon was initially thought to be exclusive and specific to C. elegans, bis etwa 2000, als sie bei anderen Tierarten entdeckt wurden (7). Since then, there has been a deluge of research articles describing the discovery and existence of miRNAs in both plants and animals. Over 25000 miRNAs have been discovered so far and for many, the exact role they play in the biology of the organism still remains elusive. 

miRNAs üben ihre Wirkungen aus, indem sie die mRNAs posttranskriptionell reprimieren, indem sie an komplementäre Stellen in den 3'-UTRs der von ihnen kontrollierten mRNA binden. Eine starke Komplementarität markiert die mRNA für den Abbau, während eine schwache Komplementarität keine Veränderungen der mRNA-Spiegel verursacht, sondern eine Hemmung der Translation bewirkt. Obwohl die Hauptrolle der miRNA bei der transkriptionellen Repression spielt, wirken sie in seltenen Fällen auch als Aktivatoren (8). miRNAs spielen eine unverzichtbare Rolle in der Entwicklung des Organismus, indem sie die Gene und Genprodukte vom embryonalen Zustand bis zur Entwicklung von Organen und Organsystemen regulieren (9-11). In addition to their role in maintaining cellular homeostasis, miRNAs have also been implicated in various diseases such as cancer (miRNAs acting as both activators and repressor of genes), neurodegenerative disorders and cardiovascular diseases. Understanding and elucidating their role in various diseases can lead to new biomarker discovery with concomitant new therapeutic approaches for disease prevention. miRNAs also play a critical role in the development and pathogenesis of infections caused by micro-organisms such as bacteria and viruses by regulating the genes of the immune system to mount an effective response to the disease. In case of viral infections, Type I interferons (IFN alpha and IFN beta) are released as anti-viral cytokines which in turn modulates the immune system to mount a combative response (12). Die Produktion von Interferonen wird sowohl auf Transkriptions- als auch Translationsebene stark reguliert und spielt eine zentrale Rolle bei der Bestimmung der antiviralen Reaktion des Wirts. Viren haben sich jedoch ausreichend entwickelt, um die Wirtszellen zu täuschen, diese Immunantwort zu unterdrücken, was dem Virus einen Vorteil für seine Replikation bietet und dadurch die Krankheitssymptome verschlimmert (12, 13). Die enge Kontrolle des Zusammenspiels zwischen der IFN-Produktion durch den Wirt bei einer Virusinfektion und seiner Unterdrückung durch das infizierende Virus bestimmt das Ausmaß und die Dauer der durch das fragliche Virus verursachten Krankheit. Obwohl die transkriptionelle Kontrolle der IFN-Produktion und verwandter IFN-stimulierter Gene (ISGs) gut etabliert ist (14), ist der Mechanismus der translationalen Kontrolle noch immer schwer fassbar (15)

Die aktuelle Studie von Forschern der McGill University, Kanada und der Queens-Universität, Belfast bietet ein mechanistisches Verständnis der translationalen Kontrolle von IFN Produktion, die die Rolle des 4EHP-Proteins bei der Unterdrückung der IFN-beta-Produktion und der Beteiligung von miRNA, miR-34a, unterstreicht. 4EHP reguliert die IFN-Produktion herunter, indem es die miR-34a-induzierte translationale Abschaltung der Ifnb1-mRNA moduliert. Eine Infektion mit RNA-Viren und eine IFN-beta-Induktion erhöhen die Spiegel der miR-34a-miRNA und lösen eine negative Feedback-Regelschleife aus, die die IFN-beta-Expression über 4EHP . unterdrückt (16). Diese Studie ist im Zuge der aktuellen Pandemie von großer Bedeutung COVID-19 (eine durch ein RNA-Virus verursachte Infektion), da sie zum weiteren Verständnis der Krankheit beitragen und zu neuen Wegen im Umgang mit der Infektion führen wird, indem die Spiegel der miR-34a-miRNA mithilfe von Designer-Aktivatoren/-Inhibitoren moduliert und in klinischen Studien getestet werden seine Auswirkungen auf die IFN-Antwort. Es gibt Berichte über klinische Studien mit der IFN-Beta-Therapie (17) und diese Studie wird dazu beitragen, die molekularen Mechanismen zu entschlüsseln, indem sie die Rolle der miRNA bei der intrinsischen Regulierung der Translationsmaschinerie des Wirts zur Aufrechterhaltung einer homöostatischen Umgebung hervorhebt. 

Future investigations and research on such and other known and emerging miRNAs coupled with integration of these findings with genomic, transcriptomic, and/or proteomic data, will not only enhance our mechanistic understanding of the cellular interactions and disease, but would also lead to novel miRNA based therapies by exploiting miRNA as actimirs (utilizing miRNAs as activators for replacement of miRNAs that have been mutated or deleted) and antagomirs (utilizing miRNAs as antagonists where there is abnormal upregulation of the said mRNA) for prevalent and emerging human and animal diseases.  

*** 

Bibliographie  

  1. Clairea T, Lamarthée B, Anglicheau D. MicroRNAs: kleine Moleküle, große Wirkungen, Aktuelle Meinung zur Organtransplantation: Februar 2021 – Band 26 – Ausgabe 1 – S. 10-16. DOI: https://doi.org/10.1097/MOT.0000000000000835  
  1. Ambros V. Die Funktionen tierischer microRNAs. Natur. 2004, 431 (7006): 350–5. DOI: https://doi.org/10.1038/nature02871  
  1. Bartel DP. MicroRNAs: Genomik, Biogenese, Mechanismus und Funktion. Zelle. 2004, 116 (2): 281–97. DOI: https://10.1016/S0092-8674(04)00045-5  
  1. Jansson MD und Lund AH MicroRNA und Krebs. Molekulare Onkologie. 2012, 6 (6): 590-610. DOI: https://doi.org/10.1016/j.molonc.2012.09.006  
  1. Bhaskaran M, Mohan M. MicroRNAs: Geschichte, Biogenese und ihre sich entwickelnde Rolle bei der Entwicklung und Krankheit von Tieren. Tierarzt Pathol. 2014;51(4):759-774. DOI: https://doi.org/10.1177/0300985813502820 
  1. Rosalind C. Lee, Rhonda L. Feinbaum, Victor Ambros. Das heterochrone Gen lin-4 von C. elegans kodiert kleine RNAs mit Antisense-Komplementarität zu lin-14, Cell, Band 75, Ausgabe 5,1993, 843, Seiten 854-0092, ISSN 8674-XNUMX. DOI: https://doi.org/10.1016/0092-8674(93)90529-Y 
  1. Pasquinelli A., Reinhart B., Slack F. et al. Erhaltung der Sequenz und des zeitlichen Ausdrucks von lass-7 heterochrone regulatorische RNA. Natur 408, 86–89 (2000). DOI: https://doi.org/10.1038/35040556 
  1. Vasudevan S., Tong Y. und Steitz JA. Wechsel von Repression zu Aktivierung: MicroRNAs können die Translation hochregulieren. Wissenschaft  21: Vol.-Nr. 2007, Ausgabe 318, S. 5858-1931. DOI: https://doi.org/10.1126/science.1149460 
  1. Bernstein E., Kim SY, Carmell MA, et al. Dicer ist für die Entwicklung von Mäusen unerlässlich. Nat Genet. 2003; 35:215–217. DOI: https://doi.org/10.1038/ng1253 
  1. Kloosterman WP, Plasterk RH. Die vielfältigen Funktionen von Mikro-RNAs bei der Entwicklung und Krankheit von Tieren. Entwicklerzelle. 2006; 11:441–450. DOI: https://doi.org/10.1016/j.devcel.2006.09.009 
  1. Wienholds E, Koudijs MJ, van Eeden FJM, et al. Das microRNA-produzierende Enzym Dicer1 ist für die Entwicklung von Zebrafischen unerlässlich. Nat Genet. 2003; 35:217–218. DOI: https://doi.org/10.1038/ng1251 
  1. Haller O, Kochs G und Weber F. Der Interferon-Reaktionskreislauf: Induktion und Suppression durch pathogene Viren. Virologie. Band 344, Ausgabe 1, 2006, Seiten 119-130, ISSN 0042-6822, DOI: https://doi.org/10.1016/j.virol.2005.09.024 
  1. McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Typ-I-Interferone bei Infektionskrankheiten. Nat. Rev. Immunol. 2015 Febr;15(2):87-103. DOI: https://doi.org/10.1038/nri3787 
  1. Apostolou, E. und Thanos, D. (2008). Die Virusinfektion induziert NF-kappa-B-abhängige interchromosomale Assoziationen, die die monoallelische IFN-b-Genexpression vermitteln. Zelle 134, 85–96. DOI: https://doi.org/10.1016/j.cell.2008.05.052   
  1. Savan, R. (2014). Posttranskriptionelle Regulation von Interferonen und ihren Signalwegen. J. Interferon-Cytokin-Res. 34, 318–329. DOI: https://doi.org/10.1089/jir.2013.0117  
  1. Zhang X, Chapat C et al. microRNA-vermittelte translationale Kontrolle der antiviralen Immunität durch das Cap-bindende Protein 4EHP. Molecular Cell 81, 1–14 2021. Veröffentlicht:12. Februar 2021. DOI:https://doi.org/10.1016/j.molcel.2021.01.030
  1. SCIEU 2021. Interferon-β zur Behandlung von COVID-19: Subkutane Verabreichung effektiver. Wissenschaftlicher Europäer. Veröffentlicht am 12. Februar 2021. Online verfügbar am http://scientificeuropean.co.uk/interferon-β-for-treatment-of-covid-19-subcutaneous-administration-more-effective/ Zugriff am 14. Februar 2021.  

*** 

Rajeev Soni
Rajeev Sonihttps://www.RajeevSoni.org/
Dr. Rajeev Soni (ORCID ID: 0000-0001-7126-5864) hat einen Ph.D. in Biotechnologie von der University of Cambridge, UK, und verfügt über 25 Jahre Erfahrung in der weltweiten Arbeit in verschiedenen Instituten und multinationalen Unternehmen wie The Scripps Research Institute, Novartis, Novozymes, Ranbaxy, Biocon, Biomerieux und als leitender Forscher im US Naval Research Lab in der Wirkstoffforschung, Molekulardiagnostik, Proteinexpression, biologischen Herstellung und Geschäftsentwicklung.

Abonnieren Sie unseren Newsletter

Aktualisierung mit den neuesten Nachrichten, Angeboten und Sonderankündigungen.

Beliebteste Artikel

Die erste erfolgreiche Schwangerschaft und Geburt nach einer Gebärmuttertransplantation von einer verstorbenen Spenderin

Erste Gebärmuttertransplantation einer verstorbenen Spenderin führt zu...

COP28: „Der UAE-Konsens“ fordert den Übergang von fossilen Brennstoffen bis 2050  

Die Klimakonferenz der Vereinten Nationen (COP28) ist zu dem Schluss gekommen...

Haben Astronomen das erste Doppelsternsystem „Pulsar – Schwarzes Loch“ entdeckt? 

Astronomen haben kürzlich die Entdeckung eines solchen Kompaktkörpers gemeldet ...
- Werbung -
94,488LüfterLike
47,677FollowerFolgen Sie uns
1,772FollowerFolgen Sie uns
30AbonnentenAbonnieren